- Description
- Summary from Dryad:
"Abstract:
Microbes have disproportionate impacts on the macroscopic world. This is in part due to their ability to grow to large groups and cooperatively secrete massive amounts of secondary metabolites that impact their environment. Yet, the conditions enabling secondary metabolism without compromising primary needs remain unclear. Here we investigated the biosynthesis of thamnolipids, a secondary metabolite that Pseudomonas aeruginosa makes to decrease the surface tension of surrounding liquid. Using a combination of genomics, metabolomics, transcriptomics, and mathematical modeling we show that biosynthesis of rhamnolipids from glycerol varies inconsistently across the phylogenetic tree; instead, non-producer lineages are also those worse at reducing the oxidative stress of primary glycerol metabolism. The link to oxidative stress explains the inconsistent distribution across the P. aeruginosa tree, adding a new layer to the regulation of rhamnolipids—a microbial secondary metabolite important for fitness in natural and clinical settings.
Usage notes:
Metabolomic data preprocessing. The extracts were profiled using liquid-chromatography coupled to mass spectrometry (LC-MS), identifying a total of 92 compounds (Supplementary Fig. 5). Some compounds contained missing values. These missing values in metabolite abundance can be (1) truly missing; (2) present in a sample but its level is below detection limit; (3) present in a sample at a level above the detection limit but missing due to failure of algorithms in data processing. Here we assume that a metabolite with missing values in all three replicates is truly missing in the sample and removed from our analysis (Supplementary Fig. 5). However, if the missing values were only found in one or two replicates, the missing values were imputed by the average of the non-missing values. After that imputation all compounds with missing values were removed (Supplementary Fig. 5).
The peak areas were normalized using Cross-Contribution Compensating Multiple Standard Normalization (CCMN) (80) with NormalizeMets R package (81). This method relies on the use of multiple internal standards. Since LC-MS lacks such internal standards, we used instead a set of metabolites assumed to be constant across all the strains. They were selected with a Kuskal-Wallis test, adjusting the p-value with Benjamini-Hochberg method. The ones with a p-value above 0.05 were considered constant (pyruvate, methylglyoxal, (S)-2-Acetolactate, Tyramine, D-Glucose, (S)-Lactate, N-acetyl-L-glutamate 5-semialdehyde, 4-Aminobutyraldehyde and Glycine), therefore after the normalization step they were removed (indicated in red, Supplementary Fig. 5A). The processed area peaks for all metabolites are included in Supplementary Table 5."
See Dryad record for information on methods.
- Access Restrictions
-
Free to All
- Access Instructions
- Download from Dryad to access
- DOI
- 10.5061/dryad.7sqv9s4tg
- Associated Publications
- Software Used
- Dataset Format(s)
- TSV
- Dataset Size
- 109 KB
Do you have or know of a dataset that should be added to the catalog? Let us know!