Stag1 and Stag2 regulate cell fate decisions in hematopoiesis through non-redundant topological control [II]
UID: 11016
- Description
- Summary from GEO:
"Transcriptional regulators, including the cohesin complex member STAG2, are recurrently mutated in cancer. The role of STAG2 in gene regulation, hematopoiesis, and tumor suppression remains unresolved. We show Stag2 deletion in hematopoietic stem/progenitor cells (HSPC) results in altered hematopoietic function, increased self-renewal, and impaired differentiation. ChIP-sequencing revealed that while Stag2 and Stag1 can bind the same loci, a component of Stag2 binding sites are unoccupied by Stag1 even in Stag2-deficient HSPCs. While concurrent loss of Stag2 and Stag1 abrogated hematopoiesis, Stag2 loss alone decreased chromatin accessibility and transcription of lineage-specification genes, including Ebf1 and Pax5, leading to blunted HSPC commitment to the B-cell lineage. Our data illustrate a role for Stag2 in transformation and transcriptional dysregulation distinct from its shared role with Stag1 in chromosomal segregation."
Overall design from GEO:
"Single-cell RNA sequencing was performed on 6 samples ( Lin-HSPC) from Stag2 KO (n=3) and WT (n=3) mice and were assayed for transcriptome-wide RNA-sequence."
-
Access via GEO
Accession #: GSE134997Access via BioProject
Accession #: PRJNA557111Access via SRA
Accession #: SRP216650 - Access Restrictions
-
Free to All
- Access Instructions
- The NCBI Gene Expression Omnibus. BioProject, and SRA databases provide open access to these files.
- Associated Publications
- Equipment Used
-
Illumina NovaSeq 6000
- Dataset Format(s)
- CSV, TAR
- Dataset Size
- 62.4 MB
Do you have or know of a dataset that should be added to the catalog? Let us know!